

«ПРОСОФТ-СИСТЕМЫ» РЕШЕНИЯ ДЛЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ

2016

НЕРАЗРУШАЮЩИЕ МЕТОДЫ КОНТРОЛЯ

ВЫПУСКАЕМОЕ ОБОРУДОВАНИЕ

Виброконтроль роторного оборудования

Цифровые вибродатчики ИВД

предназначены для работы в системах вибрационного контроля и защиты оборудования электрических станций, нефтеперекачивающих и газокомпрессорных станций и других промышленных объектов.

ИВД 2

Датчик может быть установлен во взрывоопасных зонах помещений и наружных установок, в которых возможно образование паро-газовоздушных смесей категорий IIA, IIB, IIC групп Т1-Т5.
Датчик обеспечивает измерение зазора

(осевого сдвига) между торцом чувствительной части датчика и поверхностью объекта (вала ротора).

ИВД 3

Датчик может быть установлен во взрывоопасных зонах помещений и наружных установок, в которых возможно образование паро-газовоздушных смесей категорий IIA, IIB, IIC групп Т1-Т5. Датчик обеспечивает измерение СКЗ виброскорости/мгновенного значения виброускорения по одному или трем взаимоперпендикулярным направляениям.

ИВД-4

Датчик может быть установлен во взрывоопасных зонах помещений и наружных установок, в которых возможно образование паро-газовоздушных смесей категории IIA групп Т1-Т5.

Датчик обеспечивает измерение СКЗ виброскорости/мгновенного значения виброускорения по одному пространственному направлению.

Контроллер ЦВА

предназначен для создания автономной системы виброзащиты и виброконтроля оборудования электрических станций, нефтеперекачивающих и газокомпрессорных станций и других промышленных объектов, а также для включения в любую АСУ ТП по интерфейсам Ethernet и/или RS-485.

Барьеры искробезопасности БИПМ

предназначены для обеспечения искробезопасности по одному (двум для БИПМ-5К) каналу электрической цепи (питания или сигнальной) измерительных датчиков, применяемых в системах сигнализации и аварийной защиты во взрывоопасных зонах классов 0, 1, 2, в которых возможно образование взрывоопасных смесей категории IIA, температурных групп T1 — T5.

Датчик

тахометрический МЭД-1

предназначен для измерения частоты вращения зубчатого колеса из ферромагнитного материала (устанавливаемого на вал различных агрегатов) путем преобразования изменений магнитного поля в последовательность импульсов тока прямоугольной формы.

Стенд тахометрический СТ-1

предназначен для проверки датчиков тахометрических, а также для проверки противоразгонных защит на остановленной турбине.

ВИБРОКОНТРОЛЬ РОТОРНОГО ОБОРУДОВАНИЯ

Цифровая взрывозащищенная аппаратура контроля вибрации ЦВА предназначена для вибрационного контроля и защиты роторного оборудования, установленного во взрывоопасных зонах.

Внедрение ЦВА позволяет предотвратить возможные разрушения и повреждения отдельных агрегатов или группы оборудования, а также избежать крупных аварий и дорогостоящего ремонта за счет оперативного контроля параметров вибрации и своевременного проведения вибродиагностики.

Отличительные особенности аппаратуры ЦВА: расширенная функциональность, высокая помехозащищенность, возможность эксплуатации в жестких условиях.

В состав аппаратуры входят цифровые вибродатчики ИВД 2, ИВД 3, ИВД 4, контроллер ЦВА.

Датчики вибрации могут устанавливаться во взрывоопасных зонах помещений и наружных установок, а также в подземных выработках шахт, рудников и в их наземных строениях, опасных по газу (метану) и угольной пыли.

Контроллер ЦВА предназначен для установки вне взрывоопасных зон помещений и наружных установок.

ЦИФРОВОЙ ВИБРОДАТЧИК ИВД 2

Датчик предназначен для работы в системах вибрационного контроля и защиты оборудования электрических станций, нефтеперекачивающих и газокомпрессорных станций и других промышленных объектов.

Датчик может быть установлен во взрывоопасных зонах помещений и наружных установок, в которых возможно образование паро-газовоздушных смесей категорий IIA, IIB, IIC групп Т1-Т5.

Датчик обеспечивает измерение зазора (осевого сдвига) между торцом чувствительной части датчика и поверхностью объекта (вала ротора).

Основные функции

- измерение осевого сдвига зазора между торцом чувствительной части датчика и поверхностью объекта (торцом ротора насоса);
- обмен данными по интерфейсу RS-485 (протокол Modbus RTU);
- воспроизведение унифицированного токового сигнала 4-20 мА, пропорционального осевому сдвигу;
- сравнение величины измеряемого параметра с предельными значениями (уставками), хранящимися в энергонезависимой памяти датчика;
- формирование статусов («предупреждение» и «авария») и формирование дискретных сигналов на внешние устройства при превышении измеряемым параметром величины заданных уставок (датчик-реле);
- дистанционное конфигурирование параметров: сетевого адреса, скорости обмена, величин предупредительной и аварийной уставок и калибровки измеренного канала.

Основные параметры

• диапазон измерения зазора/осевого сдвига	от 0,4 до 6,0 мм
• диапазон токового сигнала зазора (осевого сдвига)	от 4 до 20 мА
 пределы допускаемой основной относительной погрешности измерений зазора по цифровому и токовому каналу 	± 3 %
• уровень шумового сигнала датчика, не более	0,001 мм
• напряжение питания датчика	10-24 B
• диапазон температур эксплуатации датчика	от -60 до + 80°C
• время обновления выходной информации	1 c
• время установления рабочего режима, не более	10 c
• ток потребления (без использования дискретных сигналов), не более	60 мА
• степень защиты, обеспечиваемая оболочкой	IP67
• маркировка взрывозащиты	PB ExdIX /1ExdIICT5X
• масса с кабелем 3,5 метра, не более	1,2 кг

Конструктивное исполнение

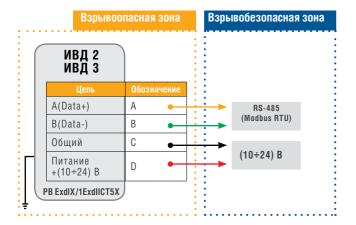
- материал корпуса сталь с никелевым покрытием;
- уровень взрывозащиты «взрывонепроницаемая оболочка».

Варианты исполнения датчика

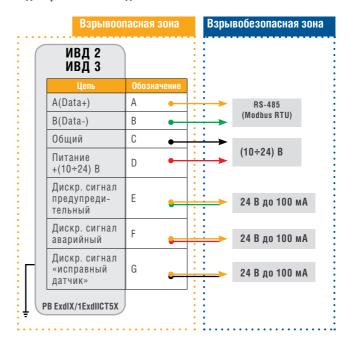
- ИВД-2Ц цифровой выход;
- ИВД-2Т цифровой выход, токовый выход 4-20 мА, пропорциональный осевому сдвигу;
- ИВД-2В цифровой выход, дискретные выходные сигналы.

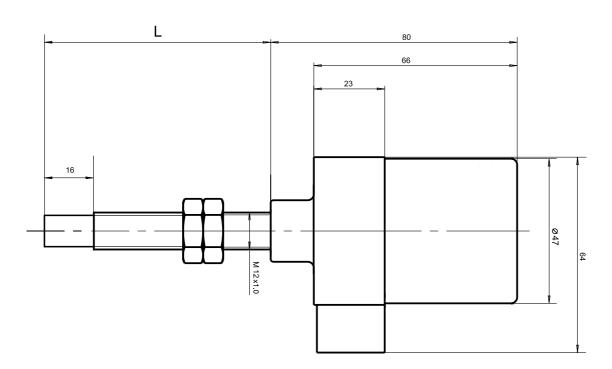
ИВД-2Х-КҮМZ

Длина защитного металлорукава на кабель от 0 до 12 м

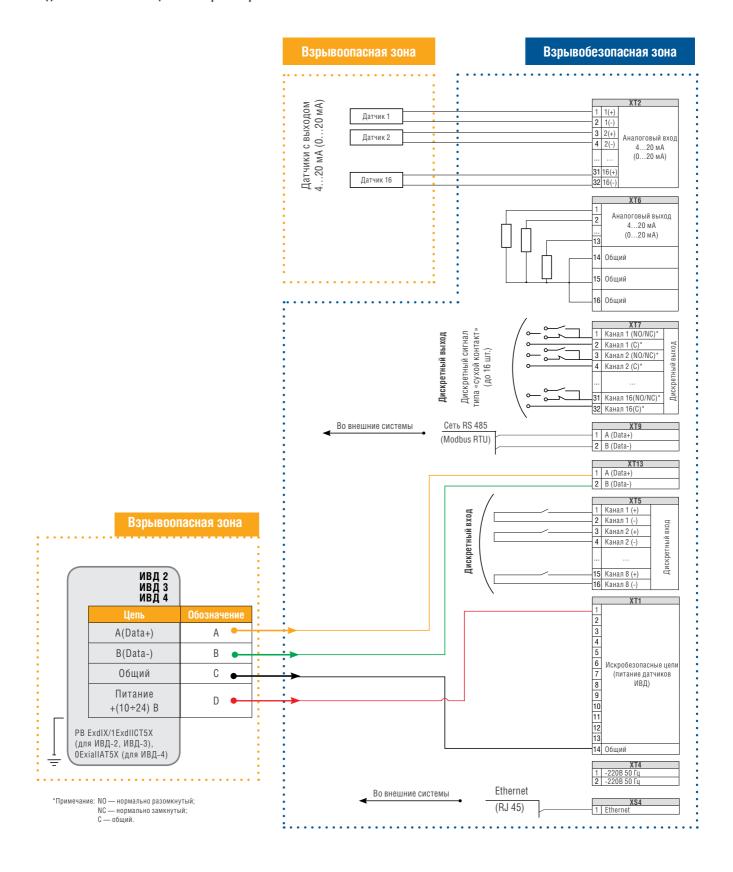

Длина постоянно присоединенного кабеля от 1,5 до 20 м

Тип выходного сигнала


- **Ц** Цифровой
- Т Цифровой и токовый (4-20 мА)
- **В** Цифровой и дискретный


Подключение ИВД 2 с цифровым выходом

Подключение ИВД 2 с цифровым выходом и дискретными выходами


Габаритные и установочные размеры ИВД 2

L – длина, по заказу из ряда: 63, 80, 100, 125, 160 мм

Подключение внешних цепей контролллера

ИНЖЕНЕРНАЯ КОМПАНИЯ 000 «ПРОСОФТ-СИСТЕМЫ» 620102, г. Екатеринбург, ул. Волгоградская, 194а тел.: +7 (343) 3-565-111, факс: +7 (343) 3-100-106 info@prosoftsystems.ru

ПРЕДСТАВИТЕЛЬСТВО В МОСКВЕ: 117997, г. Москва, ул. Профсоюзная, 93а тел.: +7 (495) 335-52-22 o.tyukov@prosoftsystems.ru

ПРЕДСТАВИТЕЛЬСТВО В РЕСПУБЛИКЕ БЕЛАРУСЬ: 220114, г. Минск, пр. Независимости, 117, оф. 100 тел./факс: +375 17-268-82-30, +375 29-185-44-02 (Velcom), +375 29-683-71-86 (Velcom) +7 (912) 264-99-94 (МТС Россия) nev@prosoftsystems.ru

ПРЕДСТАВИТЕЛЬ В РЕСПУБЛИКЕ УЗБЕКИСТАН: тел.: +998-90-935-8672 (Beeline) +7 (912) 264-99-94 (МТС Россия) nev@prosoftsystems.ru

ПРЕДСТАВИТЕЛЬ ПО СТРАНАМ СНГ И СРЕДНЕЙ АЗИИ: тел.: +7 (912) 264-99-94 (МТС Россия) nev@prosoftsystems.ru

www.prosoftsystems.ru прософт-системы.рф